Answer:
[tex]98 \pi \:\: \sf units^2[/tex]
Step-by-step explanation:
[tex]\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}[/tex]
From inspection of the given diagram, circle C and circle D both have a radius of 7 cm.
Therefore:
[tex]\implies \textsf{Area of circle C}=\pi (7)^2=49 \pi \:\: \sf cm^2[/tex]
[tex]\implies \textsf{Area of circle D}=\pi (7)^2=49 \pi \:\: \sf cm^2[/tex]
Therefore, the sum of the areas of circle and circle D is:
[tex]\implies \textsf{Area of circle C}+\textsf{Area of circle D}=49 \pi + 49 \pi = 98 \pi \:\: \sf cm^2[/tex]