Respuesta :

Answer:

x = 0.25

Step-by-step explanation:

If y varies inversely with x, then:

[tex]y \propto \dfrac{1}{x} \implies y=\dfrac{k}{x} \quad \textsf{(for some constant k)}[/tex]

Given:

  • y = 1.6 when x = 0.5

Substitute the given values into the found equation and solve for k:

[tex]\implies 1.6=\dfrac{k}{0.5}[/tex]

[tex]\implies k=1.6(0.5)[/tex]

[tex]\implies k=0.8[/tex]

Therefore:

[tex]y=\dfrac{0.8}{x}[/tex]

To find the value of x when y = 3.2, substitute y = 3.2 into the found equation and solve for x:

[tex]\implies 3.2=\dfrac{0.8}{x}[/tex]

[tex]\implies x=\dfrac{0.8}{3.2}[/tex]

[tex]\implies x=0.25[/tex]