Answer:
x = 0.25
Step-by-step explanation:
If y varies inversely with x, then:
[tex]y \propto \dfrac{1}{x} \implies y=\dfrac{k}{x} \quad \textsf{(for some constant k)}[/tex]
Given:
Substitute the given values into the found equation and solve for k:
[tex]\implies 1.6=\dfrac{k}{0.5}[/tex]
[tex]\implies k=1.6(0.5)[/tex]
[tex]\implies k=0.8[/tex]
Therefore:
[tex]y=\dfrac{0.8}{x}[/tex]
To find the value of x when y = 3.2, substitute y = 3.2 into the found equation and solve for x:
[tex]\implies 3.2=\dfrac{0.8}{x}[/tex]
[tex]\implies x=\dfrac{0.8}{3.2}[/tex]
[tex]\implies x=0.25[/tex]