I need someone to do this for me please!
Thank you so much in advance :D

Answer:
[tex] \cfrac{61}{24} [/tex]
Step-by-step explanation:
Given expression:
[tex] \cfrac{2}{3} + \bigg(\cfrac{5}{2} \bigg) {} ^{ 2} \times \cfrac{3}{10} [/tex]
Solution:
Simplify using PEMDAS.
[tex] = \sf \cfrac{2}{3} + \cfrac{25}{4} \times \cfrac{3}{10} \\ \\ = \cfrac{2}{3} + \cfrac{15}{8} \\ \\ = \cfrac{16 +45 }{24} \\ \\ = \boxed{\cfrac{61}{24} }[/tex]
Done!
Answer:
[tex]\frac{61}{24}[/tex]
Step-by-step explanation:
[tex]\frac{2}{3}[/tex] + ( [tex]\frac{5}{2}[/tex] )² × [tex]\frac{3}{10}[/tex] ← evaluate exponent
= [tex]\frac{2}{3}[/tex] + [tex]\frac{25}{4}[/tex] × [tex]\frac{3}{10}[/tex] ← evaluate multiplication ( cancel 25 and 10 by 5 )
= [tex]\frac{2}{3}[/tex] + [tex]\frac{5}{4}[/tex] × [tex]\frac{3}{2}[/tex]
= [tex]\frac{2}{3}[/tex] + [tex]\frac{15}{8}[/tex] ← evaluate addition
= [tex]\frac{2(8)}{3(8)}[/tex] + [tex]\frac{15(3)}{8(3)}[/tex]
= [tex]\frac{16}{24}[/tex] + [tex]\frac{45}{24}[/tex]
= [tex]\frac{61}{24}[/tex]