Respuesta :
Answer:
2x(x^2 - 3)(x^2 + 9)
Step-by-step explanation:
2x^5 + 12x^3 − 54x
2x(x^4 + 6x - 27)
Since -3 + 9 = 6 and -3 x 9 = -27:
2x(x^2 - 3)(x^2 + 9)
Answer:
[tex]2x(x^2-3)(x^2+9)[/tex]
Step-by-step explanation:
Given polynomial:
[tex]2x^5+12x^3-54x[/tex]
Factor out the common term [tex]2x[/tex]:
[tex]\implies 2x(x^4+6x^2-27)[/tex]
To factor the trinomial [tex]x^4+6x^2-27[/tex]:
[tex]\textsf{Let }u=x^2 \implies u^2+6u-27[/tex]
Factor the quadratic by finding two numbers that multiply to -27 and sum to 6: 9 and -3
Rewrite the middle term as the sum of these two numbers:
[tex]\implies u^2+9u-3u-27[/tex]
Factorize the first two terms and the last two terms separately:
[tex]\implies u(u+9)-3(u+9)[/tex]
Factor out the common term (u + 9):
[tex]\implies (u-3)(u+9)[/tex]
Substitute back [tex]u=x^2[/tex]:
[tex]\implies (x^2-3)(x^2+9)[/tex]
Therefore, the factored form of the given polynomial is:
[tex]\implies 2x(x^2-3)(x^2+9)[/tex]