Respuesta :

Answer:

b = 2

Step-by-step explanation:

using the tangent ratio in the right triangle and the exact value

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{b}{a}[/tex] = [tex]\frac{b}{2\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )

b × [tex]\sqrt{3}[/tex] = 2[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

b = 2

Answer:

  • C. b = 2

Step-by-step explanation:

Given that a = 2√3.

Let's find value of b...

  • [tex]\bf \tan( {30}^{o} ) = \cfrac{b}{a} [/tex]

  • [tex] \bf \cfrac{1}{ \sqrt{3} } = \cfrac{b}{2 \sqrt{3} } [/tex]

  • [tex]\bf b = 2[/tex]

______________________