A line intersects the points (8, 2) and (12, -10). What is the slope of the line in simplest form? m = [?]​

Respuesta :

Answer:  m = -3

Work Shown:

[tex](x_1,y_1) = (8,2) \text{ and } (x_2,y_2) = (12,-10)\\\\m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\m = \frac{-10 - 2}{12 - 8}\\\\m = \frac{-12}{4}\\\\m = -3\\\\[/tex]

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{y = -3}[/tex]

-------------------------------------------------------------------------------------------------------------

Given: [tex]\textsf{Goes through (8, 2) and (12, -10)}[/tex]

Find:  [tex]\textsf{The slope of the line}[/tex]

Solution: In order to determine the slope of the line we need to use the slope formula where we just plug in the values and simplify.

Plug in the values

  • [tex]\textsf{y = }\frac{y_2 - y_1}{x_2 - x_1}[/tex]
  • [tex]\textsf{y = }\frac{-10 - 2}{12 - 8}[/tex]

Simplify the expression

  • [tex]\textsf{y = }\frac{-12}{12 - 8}[/tex]
  • [tex]\textsf{y = }\frac{-12}{4}[/tex]
  • [tex]\textsf{y = -3}[/tex]

Therefore, the slope of the line that fits the description that was provided in the problem statement is -3.