Respuesta :
Answer: m = -3
Work Shown:
[tex](x_1,y_1) = (8,2) \text{ and } (x_2,y_2) = (12,-10)\\\\m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\m = \frac{-10 - 2}{12 - 8}\\\\m = \frac{-12}{4}\\\\m = -3\\\\[/tex]
-------------------------------------------------------------------------------------------------------------
Answer: [tex]\textsf{y = -3}[/tex]
-------------------------------------------------------------------------------------------------------------
Given: [tex]\textsf{Goes through (8, 2) and (12, -10)}[/tex]
Find: [tex]\textsf{The slope of the line}[/tex]
Solution: In order to determine the slope of the line we need to use the slope formula where we just plug in the values and simplify.
Plug in the values
- [tex]\textsf{y = }\frac{y_2 - y_1}{x_2 - x_1}[/tex]
- [tex]\textsf{y = }\frac{-10 - 2}{12 - 8}[/tex]
Simplify the expression
- [tex]\textsf{y = }\frac{-12}{12 - 8}[/tex]
- [tex]\textsf{y = }\frac{-12}{4}[/tex]
- [tex]\textsf{y = -3}[/tex]
Therefore, the slope of the line that fits the description that was provided in the problem statement is -3.