Find the value of JN in the figure.

Answer:
JN = 32
Step-by-step explanation:
Δ JMN and Δ JKL are similar ( AA postulate )
then the ratios of corresponding sides are in proportion, that is
[tex]\frac{JM}{JK}[/tex] = [tex]\frac{JN}{JL}[/tex] ( substitute values )
[tex]\frac{24}{33}[/tex] = [tex]\frac{JN}{JN+12}[/tex]
[tex]\frac{8}{11}[/tex] = [tex]\frac{JN}{JN+12}[/tex] ( cross- multiply )
11 JN = 8(JN + 12)
11 JN = 8 JN + 96 ( subtract 8 JN from both sides )
3 JN = 96 ( divide both sides by 3 )
JN = 32