In a market survey, 100 traders sell fruits, 40 sell apples, 46 oranges, 50 mangoes. 14 apples and oranges. 15 apples and mangoes, and 10 sell the three fruits. Each of the 100 traders sells at least one of the three fruits. Find the number that sell oranges and mangoes only.​

Respuesta :

The number of traders that sell oranges and mangoes only are 17.

How to determine the common difference

Since there are three sets, use the formula

n (A∪O∪M) = n(A) + n(O) + n(M) - n(A∩O) -n(O∩M) - n(A∩M) + n(A∩O∩M)

A represents apple traders = 40

O represents orange traders = 46

M represents mangoes traders = 50

A∪O∪M = total traders = 100

A∩O = 14

O∩M = ?

A∩M = 15

A∩O∩M = 10

Substitute values into the formula

100 = 40 + 46 + 50 - 14 - 15 - O∩M + 10

100 = 146 - 29 - O∩M

100 = 117 - O∩M

Make O∩M subject of formula

- O∩M = 100 -117

O∩M = 17 traders

Therefore, the number of traders that sell oranges and mangoes only are 17.

Learn more about Venn diagram here:

https://brainly.com/question/24713052

#SPJ1