Respuesta :

Answer:   [tex]\log_2(20)[/tex]

Work Shown:

[tex]\log_2(4) + \log_2(5)\\\\\log_2(4*5)\\\\\log_2(20)\\\\[/tex]

The rule used is [tex]\log_{b}(\text{x}) + \log_{b}(\text{y}) = \log_{b}(\text{xy})[/tex]

[tex]\large{\textbf{Heya !}}[/tex]

✏[tex]\large\sf{\bigstar Given:-}[/tex] ✏

  • ㏒ expression = [tex]\sf{\log_24+\log_25}[/tex]

✏[tex]\large{\sf{\bigstar To\quad Find:-}[/tex] ✏

  • Condense the ㏒ into ONE expression - ?

✏[tex]\large{\sf{\bigstar Solution\quad steps:-}[/tex]

`To find what we want we need to apply ㏒ rules

[tex]\large{\sf{\longmapsto{log_ba+log_bc=log_b(ac)}[/tex]

using formula,

[tex]\large{\sf{\longmapsto{log_24+log_25=log_2(4\cdot5)}[/tex]

simplifying,

[tex]\large{\sf{\longmapsto{log_220}[/tex]

`hope it was helpful ! ~