Respuesta :
Answer: [tex]\log_2(20)[/tex]
Work Shown:
[tex]\log_2(4) + \log_2(5)\\\\\log_2(4*5)\\\\\log_2(20)\\\\[/tex]
The rule used is [tex]\log_{b}(\text{x}) + \log_{b}(\text{y}) = \log_{b}(\text{xy})[/tex]
[tex]\large{\textbf{Heya !}}[/tex]
✏[tex]\large\sf{\bigstar Given:-}[/tex] ✏
- ㏒ expression = [tex]\sf{\log_24+\log_25}[/tex]
✏[tex]\large{\sf{\bigstar To\quad Find:-}[/tex] ✏
- Condense the ㏒ into ONE expression - ?
✏[tex]\large{\sf{\bigstar Solution\quad steps:-}[/tex]
`To find what we want we need to apply ㏒ rules
[tex]\large{\sf{\longmapsto{log_ba+log_bc=log_b(ac)}[/tex]
using formula,
[tex]\large{\sf{\longmapsto{log_24+log_25=log_2(4\cdot5)}[/tex]
simplifying,
[tex]\large{\sf{\longmapsto{log_220}[/tex]
`hope it was helpful ! ~