Respuesta :

[tex]\textbf{Heya !}[/tex]

✏[tex]\bigstar\textsf{Given:-}[/tex]✏

  • y is inversely proportional to [tex]\sf{x^2}[/tex].

✏[tex]\bigstar\textsf{To\quad find:-}[/tex] ✏

  • If y=2 when x=4, what is y when x=[tex]\frac{1}{2}[/tex] ?

▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪

✏[tex]\bigstar\textsf{Solution\quad steps:-}[/tex] ✏

If y is inversely proportional to x^2, the equation looks as shown below:-

[tex]\sf{\longmapsto{y=\cfrac{k}{x^2}}[/tex], where k -- constant of proportionality

Plug in all values

[tex]\sf{\longmapsto{2=\cfrac{k}{4^2}}[/tex] , simplifying --

[tex]\sf{\longmapsto{2=k/16}[/tex]

multiply by 16 both sides

[tex]\sf{\longmapsto 2*16=k}}[/tex]

[tex]\sf{\longmapsto{32=k}}[/tex]

▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪

Plug 32 into the second equation:-

[tex]\sf{\longmapsto y=\cfrac{32}{\bigg(\cfrac{1}{2}\bigg)^2}}[/tex]

simplify the complex fraction

[tex]\longmapsto\sf{y=\cfrac{32}{\cfrac{1}{4}}[/tex]

divide fractions

[tex]\sf{\longmapsto{y=\cfrac{32}{1}\div\cfrac{1}{4}}=\cfrac{32}{1}\cdot}\cfrac{4}{1}}=128}[/tex]

`hope that was helpful to u ~