Respuesta :

The two equivalent forms of [tex]sec^2x[/tex] are [tex]\frac{1}{cos^2x}[/tex] and [tex]1+tan^2x[/tex]

Equivalent forms forms of trigonometric expressions

The given trigonometric expression is:

[tex]sec^2x[/tex]

Note that:

[tex]sec(x)=\frac{1}{cos(x)}[/tex]

Substitute this equivalence to the given expression

[tex]sec^2(x)=\frac{1}{cos^2(x)}[/tex]

Also from [tex]cos^2(x)+sin^2(x)=1[/tex]

Divide through by [tex]cos^2x[/tex]

[tex]\frac{cos^2x}{cos^2x} +\frac{sin^2x}{cos^2x}=\frac{1}{sin^2x}[/tex]

Simplifying the resulting expression:

[tex]1+tan^2x=sec^2x\\\\sec^2x=1+tan^2x[/tex]

Therefore, the two equivalent forms of [tex]sec^2x[/tex] are [tex]\frac{1}{cos^2x}[/tex] and [tex]1+tan^2x[/tex]

Learn more on equivalent forms of trigonometric expressions here:

https://brainly.com/question/11919000

#SPJ1