Respuesta :
Answer:
- The epicenter is ( - 2, 3)
Step-by-step explanation:
Let the epicenter be E(x, y).
Use the distance formula for each given distance:
- AE² = (x + 2)² + (y - 5)² = 2²
- BE² = (x - 2)² + (y - 3)² = 4²
- CE² = (x + 2)² + (y + 4)² = 7²
Use the first and third equations, considering both have same term for x, and solve for y:
- (y - 5)² - 4 = (y + 4)² - 49
- y² - 10y + 25 - 4 = y² + 8y + 16 - 49
- 18y = 54
- y = 3
Substitute y into one of equations and solve for x:
- (x + 2)² + (3 - 5)² = 4
- (x + 2)² + 4 = 4
- (x + 2)² = 0
- x + 2 = 0
- x = - 2
The epicenter is E( - 2, 3)
Answer:
(-2, 3)
Step-by-step explanation:
Given:
- A = (-2, 5) → 2 miles away
- B = (2, 3) → 4 miles away
- C = (-2, -4) → 7 miles away
Model each given point as the center of a circle and the distance the epicenter is away from the point as the circle's radius.
The epicenter's location will be the point of intersection of the three circles.
Equation of a circle
[tex](x-a)^2+(y-b)^2=r^2[/tex]
where (a, b) is the center and r is the radius
Circle A
- center = (-2, 5)
- radius = 2 miles
[tex]\implies (x+2)^2+(y-5)^2=4[/tex]
[tex]\implies x^2+4x+4+y^2-10y+25=4[/tex]
[tex]\implies x^2+4x+y^2-10y+25=0[/tex]
Circle B
- center = (2, 3)
- radius = 4 miles
[tex]\implies (x-2)^2+(y-3)^2=16[/tex]
[tex]\implies x^2-4x+4+y^2-6y+9=16[/tex]
[tex]\implies x^2-4x+y^2-6y-3=0[/tex]
Circle C
- center = (-2, -4)
- radius = 7 miles
[tex]\implies (x+2)^2+(y+4)^2=49[/tex]
[tex]\implies x^2+4x+4+y^2+8y+16=49[/tex]
[tex]\implies x^2+4x+y^2+8y-29=0[/tex]
To find the point of intersection of the three circles, solve simultaneously.
Substitute equation B into equation A to eliminate x² and y²:
[tex]\implies x^2-4x+y^2-6y-3=x^2+4x+y^2-10y+25[/tex]
[tex]\implies -4x-6y-3=4x-10y+25[/tex]
Rearrange to isolate y:
[tex]\implies -6y-3=8x-10y+25[/tex]
[tex]\implies 4y-3=8x+25[/tex]
[tex]\implies 4y=8x+28[/tex]
[tex]\implies y=2x+7[/tex]
Substitute the expression for y into equation C and simplify:
[tex]\implies x^2+4x+(2x+7)^2+8(2x+7)-29=0[/tex]
[tex]\implies x^2+4x+4x^2+28x+49+16x+56-29=0[/tex]
[tex]\implies 5x^2+48x+76=0[/tex]
Substitute the expression for y into equation B and simplify:
[tex]\implies x^2-4x+(2x+7)^2-6(2x+7)-3=0[/tex]
[tex]\implies x^2-4x+4x^2+28x+49-12x-42-3=0[/tex]
[tex]\implies 5x^2+12x+4=0[/tex]
Equate the equations to eliminate 5x² and solve for x:
[tex]\implies 5x^2+48x+76=5x^2+12x+4[/tex]
[tex]\implies 48x+76=12x+4[/tex]
[tex]\implies 36x+76=4[/tex]
[tex]\implies 36x=-72[/tex]
[tex]\implies x=-2[/tex]
Substitute the found value of x into the found expression for y:
[tex]\implies y=2(-2)+7[/tex]
[tex]\implies y=-4+7[/tex]
[tex]\implies y=3[/tex]
Therefore, the point of intersection of the three circles if (-2, 3) and hence the location of the earthquake's epicenter is (-2, 3).
Learn more about circle equations here:
https://brainly.com/question/27953043
https://brainly.com/question/27979372
