Using the relation between velocity, distance and time, it is found that a reasonable estimation of the current is of 1 mph.
Velocity is distance divided by time, hence:
[tex]v = \frac{d}{t}[/tex]
Upstream, against the current, he traveled 3 miles in t hours, hence the equation is:
[tex]2 - c = \frac{3}{t}[/tex]
[tex]c = 2 - \frac{3}{t}[/tex]
Downstream, with the current, he traveled 3 miles in 4 - t hours, hence the equation is:
[tex]2 + c = \frac{3}{4 - t}[/tex]
Hence:
[tex]c = \frac{3}{4 - t} - 2[/tex]
Then, taking the two equal equations:
[tex]2 - \frac{3}{t} = \frac{3}{4 - t} - 2[/tex]
[tex]\frac{3}{4 - t} + \frac{3}{t} = 4[/tex]
[tex]\frac{3t + 12 - 3t}{t(4 - t)} = 4[/tex]
12 = -4t² + 16t
4t² - 16t + 12 = 0
t² - 4t + 3 = 0
(t - 3)(t - 1) = 0.
The current is positive, hence:
[tex]c = 2 - \frac{3}{3}[/tex]
c = 2 - 1
c = 1 mph.
More can be learned about the relation between velocity, distance and time at https://brainly.com/question/24316569
#SPJ1