Respuesta :

If the function is

[tex]y = 4 e^x \cos(3x)[/tex]

then we have derivatives

[tex]Dy = 4 e^x \cos(3x) - 12 e^x \sin(3x)[/tex]

[tex]D^2y = -32 e^x \cos(3x) - 24 e^x \sin(3x)[/tex]

Now consider the linear ODE

[tex]aD^2y + bDy + cy = 0[/tex]

Substituting [tex]y[/tex] and its derivatives reduces the equation to

[tex](-32a + 4b + 4c) \cos(3x) + (-24a - 12b) \sin(3x) = 0[/tex]

Now,

[tex]-24a - 12b = 0 \implies b = -2a[/tex]

[tex]-32a + 4b + 4c = 0 \implies c = 10a[/tex]

Then the minimal ODE with the given solution is

[tex]aD^2y -2a Dy + 10ay = 0[/tex]

or

[tex]\boxed{D^2y  -2 Dy + 10y = 0}[/tex]