Solve for m.

[tex] \frac{5}{4 - m} = \frac{ - 3}{m + 2}[/tex]


A. [tex] - \frac{11}{3} [/tex]

B. [tex] - 11[/tex]

C. [tex] - \frac{7}{3} [/tex]

D. [tex] - 3[/tex]​

Respuesta :

Hello,

[tex] \frac{5}{4 - m} = \frac{ - 3}{2 + m} [/tex]

[tex]5(2 + m) = - 3(4 - m)[/tex]

[tex]10 + 5m = - 12 + 3m[/tex]

[tex]5m - 3m = - 12 - 10[/tex]

[tex]2m = - 22[/tex]

[tex]m = \frac{ - 22}{2} [/tex]

[tex]m = - 11[/tex]

→ Answer B

Variable m cannot be equal to any of the values −2,4 as division by zero is undefined. Multiply both sides of the equation by (m − 4)(m + 2), the lowest common denominator of 4−m,m + 2.

  • −(2 + m) ×5 = (m −4 )( −3 )

To find the opposite of 2+m, find the opposite of each term.

  • (−2 −m) ×5 = ( m−4 )( −3 )

Use the distributive property to multiply −2−m by 5.

  • −10 −5m = ( m−4 )( −3 )

Use the distributive property to multiply m−4 by −3.

  • −10 −5m =−3m + 12

Add 3m to both sides.

  • −10 − 5m + 3m =12

Combine −5m and 3m to get −2m.

  • −10 −2m = 12

Add 10 to both sides.

  • −2m = 12 + 10

Add 12 and 10 to get 2.

  • −2m = 22

Divide both sides by −2.

  • m = 22 / -2

Divide 22 by −2 to get −11.

  • m = −11

Therefore, the correct option is "B".