Respuesta :

The center of the circle = (8, -4)

The radius of the circle =  [tex]\sqrt{76}[/tex]

Finding the center and radius of a circle from the equation

The given equation of the circle is:

[tex]x^2+y^2-16x+8y+4=0[/tex]

The equation can be expressed and simplified as:

[tex]x^2-16x+y^2+8y=-4\\\\x^2-16y+8^2+y^2+8y+4^2=-4+8^2+4^2\\\\(x-8)^2+(y+4)^2=-4+64+16\\\\(x-8)^2+(y+4)^2=76[/tex]

The general equation of a circle is:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

Comparing the two equations:

The center, (a, b) = (8, -4)

The radius, r = [tex]\sqrt{76}[/tex]

Learn more on the equation of a circle here: https://brainly.com/question/1506955

#SPJ1