Respuesta :
Using the computational knowledge in python it is possible to write a code that uses the functions to make a a prolog program to answer the following queries
Writting the code in python:
valid([]).
valid([Head|Tail]) :-
fd_all_different(Head),
valid(Tail).
sudoku(Puzzle, Solution) :-
Solution = Puzzle,
Puzzle = [S11, S12, S13, S14,
S21, S22, S23, S24,
S31, S32, S33, S34,
S41, S42, S43, S44],
fd_domain(Solution, 1, 4),
Row1 = [S11, S12, S13, S14],
Row2 = [S21, S22, S23, S24],
Row3 = [S31, S32, S33, S34],
Row4 = [S41, S42, S43, S44],
Col1 = [S11, S21, S31, S41],
Col2 = [S12, S22, S32, S42],
Col3 = [S13, S23, S33, S43],
Col4 = [S14, S24, S34, S44],
Square1 = [S11, S12, S21, S22],
Square2 = [S13, S14, S23, S24],
Square3 = [S31, S32, S41, S42],
Square4 = [S33, S34, S43, S44],
valid([Row1, Row2, Row3, Row4,
Col1, Col2, Col3, Col4,
Square1, Square2, Square3, Square4]).
| ?- sudoku([_, 4, 3, 2,
3, _, _, _,
4, 1, _, _,
_, _, 4, 1],
Solution).
Solution = [1,4,3,2,3,2,1,4,4,1,2,3,2,3,4,1]
yes
See more about python at brainly.com/question/18502436
#SPJ1
