Select the correct answer.
Two quadrilateral are plotted in the upper left and upper right quadrants, respectively. Points correspond to A(-2,6), B(-4,12), C(-8,14) and D(-6,6). On the upper right, P(2,6), Q(4,12), R(8,14), and S(6,6).

Which sentence fully illustrates that polygon ABCD is congruent to polygon PQRS?

A.
Corresponding pairs of angles on ABCD and PQRS are equal in measure.

B.
Corresponding pairs of sides on ABCD and PQRS are equal in length.

C.
Polygon ABCD maps to polygon PQRS through a reflection only.

D.
Polygon ABCD maps to polygon PQRS through a translation only

Respuesta :

If two quadrilateral are plotted in the upper left and upper right quadrants, respectively and points correspond to A(-2,6), B(-4,12), C(-8,14) and D(-6,6). On the upper right, P(2,6), Q(4,12), R(8,14), and S(6,6) then the statement which shows that ABCD and PQRS are congruent is option B which is corrsponding pairs of sides on ABCD and PQRS are equal in length.

Given coordinates of A(-2,6), B(-4,12), C(-8,14) , D(-6,6) and P(2,6), Q(4,12), R(8,14), and S(6,6).

PQ=[tex]\sqrt{(4-2)^{2} +(12-6)^{2} }[/tex]

=[tex]\sqrt{2^{2} +6^{2} }[/tex]

=[tex]\sqrt{4+36}[/tex]

=[tex]\sqrt{40}[/tex] units

AB=[tex]\sqrt{(-4-2)^{2} +(12-6)^{2} }[/tex]

=[tex]\sqrt{(-2)^{2} +(6)^{2} }[/tex]

=[tex]\sqrt{4+36}[/tex]

=[tex]\sqrt{40}[/tex] units

QR=[tex]\sqrt{(8-4)^{2} +(14-12)^{2} }[/tex]

=[tex]\sqrt{(4)^{2} +(2)^{2} }[/tex]

=[tex]\sqrt{16+4}[/tex]

=[tex]\sqrt{20}[/tex]units

BC=[tex]\sqrt{(-8+4)^{2} +(14-12)^{2} }[/tex]

=[tex]\sqrt{4+64 }[/tex]

=[tex]\sqrt{68}[/tex] units

RS=[tex]\sqrt{(6-8)^{2} +(6-14)^{2} }[/tex]

=[tex]\sqrt{4+64 }[/tex]

=[tex]\sqrt{68}[/tex] units

CD=[tex]\sqrt{(-6-8)^{2} +(6-14)^{2} }[/tex]

=[tex]\sqrt{4+64}[/tex]

=[tex]\sqrt{68}[/tex] units

SP=[tex]\sqrt{(6-2)^{2} +(6-6)^{2} }[/tex]

=[tex]\sqrt{16}[/tex]

=4 units

DA=[tex]\sqrt{(-6+2)^{2} +(6-6)^{2} }[/tex]

=[tex]\sqrt{16}[/tex]

=4 units

AB=PQ,QR=BC,SR=DC,PS=AD.

Hence the right statement is that corresponding pairs of side ABCD and PQRS are equal in length.

Learn more about congruency at https://brainly.com/question/2938476

#SPJ1