Respuesta :

The solution of the recurrence relation is [tex]a_n=3.2^n[/tex]

For given question,

We have been given a recurrence relation [tex]a_n = 2a_{n-1}[/tex] for n ≥ 1

and an initial condition [tex]a_0=3[/tex]

Let [tex]a_n[/tex] = m², [tex]a_{n-1}[/tex] = m and [tex]a_{n-2}[/tex] = 1

So from given recurrence relation we get an characteristic equation,

⇒ m² = 2m

⇒ m² - 2m = 0                     .........( Subtract 2m from each side)

⇒ m(m - 2) = 0                     .........(Factorize)

⇒ m = 0    or  m - 2 = 0

⇒ m = 0   or   m = 2

We know that the solution of the recurrence relation is then of the form

[tex]a_n=\alpha_1 {m_1}^n + \alpha_2 {m_2}^n[/tex]  where [tex]m_1,m_2[/tex] are the roots of the characteristic equation.

Let, [tex]m_1[/tex] = 0   and [tex]m_2[/tex] = 2

From above roots,

[tex]\Rightarrow a_n=\alpha_1 {0}^n + \alpha_2 {2}^n\\\\\Rightarrow a_n=0+\alpha_2 {2}^n\\\\\Rightarrow a_n=\alpha_2 {2}^n[/tex]

For n = 0,

[tex]\Rightarrow a_0=\alpha_2 {2}^0\\\\\Rightarrow a_0=\alpha_2 \times 1\\\\\Rightarrow a_0=\alpha_2[/tex]

But  [tex]a_0=3[/tex]

This means [tex]\alpha_2=3[/tex]

so, the solution of the recurrence relation would be [tex]a_n=3.2^n[/tex]

Therefore, the solution of the recurrence relation is [tex]a_n=3.2^n[/tex]

Learn more about the recurrence relation here:

https://brainly.com/question/27618667

#SPJ4