Respuesta :
The solution of the recurrence relation is [tex]a_n=3.2^n[/tex]
For given question,
We have been given a recurrence relation [tex]a_n = 2a_{n-1}[/tex] for n ≥ 1
and an initial condition [tex]a_0=3[/tex]
Let [tex]a_n[/tex] = m², [tex]a_{n-1}[/tex] = m and [tex]a_{n-2}[/tex] = 1
So from given recurrence relation we get an characteristic equation,
⇒ m² = 2m
⇒ m² - 2m = 0 .........( Subtract 2m from each side)
⇒ m(m - 2) = 0 .........(Factorize)
⇒ m = 0 or m - 2 = 0
⇒ m = 0 or m = 2
We know that the solution of the recurrence relation is then of the form
[tex]a_n=\alpha_1 {m_1}^n + \alpha_2 {m_2}^n[/tex] where [tex]m_1,m_2[/tex] are the roots of the characteristic equation.
Let, [tex]m_1[/tex] = 0 and [tex]m_2[/tex] = 2
From above roots,
[tex]\Rightarrow a_n=\alpha_1 {0}^n + \alpha_2 {2}^n\\\\\Rightarrow a_n=0+\alpha_2 {2}^n\\\\\Rightarrow a_n=\alpha_2 {2}^n[/tex]
For n = 0,
[tex]\Rightarrow a_0=\alpha_2 {2}^0\\\\\Rightarrow a_0=\alpha_2 \times 1\\\\\Rightarrow a_0=\alpha_2[/tex]
But [tex]a_0=3[/tex]
This means [tex]\alpha_2=3[/tex]
so, the solution of the recurrence relation would be [tex]a_n=3.2^n[/tex]
Therefore, the solution of the recurrence relation is [tex]a_n=3.2^n[/tex]
Learn more about the recurrence relation here:
https://brainly.com/question/27618667
#SPJ4