Respuesta :

Answer:

p ≈ 7.3 m

Step-by-step explanation:

using the Sine Rule in the triangle

[tex]\frac{p}{sinP}[/tex] = [tex]\frac{r}{sinR}[/tex] ( substitute values )

[tex]\frac{p}{sin40}[/tex] = [tex]\frac{10}{sin62}[/tex] ( cross- multiply )

p × sin62° = 10 × sin40° ( divide both sides by sin62° )

p = [tex]\frac{10sin40}{sin62}[/tex] ≈ 7.3 m ( to the nearest tenth )

Answer:

[tex]\fbox {p = 7.3 m}[/tex]

Step-by-step explanation:

Applying the Law of Sines :

[tex]\boxed {\frac{sin R}{PS} = \frac{sin P}{RS}}[/tex]

Substitute the values :

  • sin 62° / 10 = sin 40° / p
  • p = sin 40° × 10 / sin 62°
  • p = 0.64278761 × 10 / 0.882947593
  • p = 7.3 m (nearest tenth)