The random variable x represents the number of computers that families have along with the corresponding probabilities. Find the mean and standard deviation for the random variable x. Group of answer choices mean: 1.39; standard deviation: 0.80 mean: 1.18; standard deviation: 0.64 mean: 1.39; standard deviation: 0.64 mean: 1.18; standard deviation: 1.30

Respuesta :

The value of the Mean & Standard deviation is 1.30 and 1.18.

According to the statement

we have a given that the random variable x represents the number of computers that families have along with the corresponding probabilities.

And we have to find the mean and standard deviation from the given data which is related to the probabilities values

So, according to the given data

The formula to compute the mean is:

Mean = summation [x*p(x)]

Compute the mean as follows:

Mean = summation [x*p(x)]

Mean = summation [0*0.49 + 1* 0.05 + 2*0.32 + 3*0.07 + 4*0.07]

Mean = 0 +0.05 + 0.64 + 0.21 + 0.28

Mean = 1.18

The mean of the random variable x is 1.18.

And after calculating the variance from the formula get

The value of standard deviation is 1.30

So, The value of the Mean & Standard deviation is 1.30 and 1.18.

Learn more about mean and standard deviation here https://brainly.com/question/14650840

#SPJ4