A 149-g baseball is dropped from a tree 15.0 m above the ground.
With what speed would it hit the ground if air resistance could be ignored?
Express your answer to three significant figures and include the appropriate units.
If it actually hits the ground with a speed of 9.00 m/s , what is the magnitude of the average force of air resistance exerted on it?
Express your answer to three significant figures and include the appropriate units.

Respuesta :

1. The speed with which the ball hits the ground is 17.1 m/s

2. The magnitude of the average force of air resistance exerted on it is 0.77 N

1. How to determine the velocity with which the ball hits the ground

  • Initial velocity (u) = 0 m/s
  • Acceleration due to gravity (g) = 9.8 m/s²
  • Height (h) = 15 m
  • Final velocity (v) =?

v² = u² + 2gh

v² = 2gh

Take the square root of both side

v = √(2 × 9.8 × 15)

v = 17.1 m/s

2. How to determine the force

We'll begin by calculating the time to reach the ground. This is illustrated below:

  • Acceleration due to gravity (g) = 9.8 m/s²
  • Height (h) = 15 m
  • Time (t) =?

h = ½gt²

15 = ½ × 9.8 × t²

15 = 4.9 × t²

Divide both side by 4.9

t² = 15 / 4.9

Take the square root of both side

t = √(15 / 4.9)

t = 1.75 s

Now we can determine the force. This can be obtained as illustrated below:

  • Mass (m) = 149 g = 149 / 1000 = 0.149 Kg
  • Initial velocity (u) = 0 m/s
  • Final velocity (v) = 9 m/s
  • Time (t) = 5 ms = 1.75 s
  • Force (F) = ?

F = m(v –u) / t

F = 0.149(9 – 0) / 1.75

F = 0.77 N

Learn more about motion under gravity:

https://brainly.com/question/22719691

#SPJ1