Respuesta :

  • y=1/9x-2

Interchange x and y

[tex]\\ \tt\leadsto x=\dfrac{1}{9}y-2[/tex]

  • Solve for y

[tex]\\ \tt\leadsto \dfrac{1}{9}y=x+2[/tex]

[tex]\\ \tt\leadsto y=9(x+2)[/tex]

[tex]\\ \tt\leadsto y=9x+18[/tex]

  • That's the inverse

[tex]\\ \tt\leadsto f^{-1}(x)=9x+18[/tex]

Answer:

[tex]f^{-1}(x)=9x+18[/tex]

Step-by-step explanation:

[tex]f^{-1}(x)[/tex] is the notation for the inverse of a function.  

The inverse of a function is its reflection in the line y = x.

Given function:

[tex]f(x)=\dfrac{1}{9}x-2[/tex]

To find the inverse of the given function:

Replace f(x) with y to get an equation for y in terms of x:

[tex]\implies y=\dfrac{1}{9}x-2[/tex]

Rearrange the equation to make x the subject:

[tex]\implies y+2=\dfrac{1}{9}x[/tex]

[tex]\implies 9(y+2)=x[/tex]

[tex]\implies x=9y+18[/tex]

Replace x with [tex]f^{-1}(x)[/tex] and y with x:

[tex]\implies f^{-1}(x)=9x+18[/tex]

Learn more about inverse functions here:

https://brainly.com/question/16071767

https://brainly.com/question/28049700

Ver imagen semsee45