If f(x) = x-2, what is f¹(x)?
f¹(x) = 9x + 18
ƒ²¹(x) = x + 2
f¹(x) = 9x+2
ƒ¹ (x) = -2x +

Interchange x and y
[tex]\\ \tt\leadsto x=\dfrac{1}{9}y-2[/tex]
[tex]\\ \tt\leadsto \dfrac{1}{9}y=x+2[/tex]
[tex]\\ \tt\leadsto y=9(x+2)[/tex]
[tex]\\ \tt\leadsto y=9x+18[/tex]
[tex]\\ \tt\leadsto f^{-1}(x)=9x+18[/tex]
Answer:
[tex]f^{-1}(x)=9x+18[/tex]
Step-by-step explanation:
[tex]f^{-1}(x)[/tex] is the notation for the inverse of a function.
The inverse of a function is its reflection in the line y = x.
Given function:
[tex]f(x)=\dfrac{1}{9}x-2[/tex]
To find the inverse of the given function:
Replace f(x) with y to get an equation for y in terms of x:
[tex]\implies y=\dfrac{1}{9}x-2[/tex]
Rearrange the equation to make x the subject:
[tex]\implies y+2=\dfrac{1}{9}x[/tex]
[tex]\implies 9(y+2)=x[/tex]
[tex]\implies x=9y+18[/tex]
Replace x with [tex]f^{-1}(x)[/tex] and y with x:
[tex]\implies f^{-1}(x)=9x+18[/tex]
Learn more about inverse functions here:
https://brainly.com/question/16071767
https://brainly.com/question/28049700