Respuesta :

Answer:

see explanation

Step-by-step explanation:

to find the zeros let f(x) = 0

1

f(x) = 0 , that is

x(x + 10) = 0

equate each factor to zero and solve for x

x = 0

x + 10 = 0 ⇒ x = - 10

2

f(x) = 0 , that is

x(x - 3) - 4(x - 3) = 0 ← factor out (x - 3) from each term on the left side

(x - 3)(x - 4) = 0

equate each factor to zero and solve for x

x - 3 = 0 ⇒ x = 3

x - 4 = 0 ⇒ x = 4

Esther

Answer:

1) x₁ = 0, x₂ = -10

2) x₁ = 3, x₂ = 4

Step-by-step explanation:

Given functions:

[tex]1)\ f(x)=x(x+10)[/tex]

[tex]2)\ f(x)=x(x-3)-4(x-3)[/tex]

.................................................................................................................................................

Zero Product Property: If m • n = 0, then m = 0 or n = 0.

Distributive Property: a(b + c) = ab + ac.

Standard Form of a Quadratic: ax² + bx + c = 0.

.................................................................................................................................................

The Zero Product Property

1) f(x) = x(x + 10)

Step 1: Set the function to zero.

[tex]\implies 0=x(x+10)[/tex]

Step 2: Apply the Zero Product Property.

[tex]\boxed{x_1=0}[/tex]

[tex]x+10=0\implies \boxed{x_2=-10}[/tex]

The solutions to this quadratic are: [tex]x_1=0,\ x_2=-10[/tex].

.................................................................................................................................................

The Zero Product Property

2. f(x) = x(x - 3) - 4(x - 3)

Step 1: Set the function to zero.

[tex]\implies 0 = x(x - 3) - 4(x - 3)[/tex]

Step 2: Factor out [tex]x- 3[/tex].

[tex]\implies 0 = (x - 3)(x - 4)[/tex]

Step 3: Apply the Zero Product Property.

[tex]x-3=0\implies \boxed{x_1=3}[/tex]

[tex]x-4=0 \implies \boxed{x_2=4}[/tex]

The solutions to this quadratic are: [tex]x_1=3,\ x_2=4[/tex].

.................................................................................................................................................

Learn more about quadratic functions here:

brainly.com/question/27638369