Help with these two problems and show work please having trouble solving them !

Answer:
see explanation
Step-by-step explanation:
to find the zeros let f(x) = 0
1
f(x) = 0 , that is
x(x + 10) = 0
equate each factor to zero and solve for x
x = 0
x + 10 = 0 ⇒ x = - 10
2
f(x) = 0 , that is
x(x - 3) - 4(x - 3) = 0 ← factor out (x - 3) from each term on the left side
(x - 3)(x - 4) = 0
equate each factor to zero and solve for x
x - 3 = 0 ⇒ x = 3
x - 4 = 0 ⇒ x = 4
Answer:
1) x₁ = 0, x₂ = -10
2) x₁ = 3, x₂ = 4
Step-by-step explanation:
Given functions:
[tex]1)\ f(x)=x(x+10)[/tex]
[tex]2)\ f(x)=x(x-3)-4(x-3)[/tex]
.................................................................................................................................................
Zero Product Property: If m • n = 0, then m = 0 or n = 0.
Distributive Property: a(b + c) = ab + ac.
Standard Form of a Quadratic: ax² + bx + c = 0.
.................................................................................................................................................
The Zero Product Property
1) f(x) = x(x + 10)
Step 1: Set the function to zero.
[tex]\implies 0=x(x+10)[/tex]
Step 2: Apply the Zero Product Property.
[tex]\boxed{x_1=0}[/tex]
[tex]x+10=0\implies \boxed{x_2=-10}[/tex]
The solutions to this quadratic are: [tex]x_1=0,\ x_2=-10[/tex].
.................................................................................................................................................
The Zero Product Property
2. f(x) = x(x - 3) - 4(x - 3)
Step 1: Set the function to zero.
[tex]\implies 0 = x(x - 3) - 4(x - 3)[/tex]
Step 2: Factor out [tex]x- 3[/tex].
[tex]\implies 0 = (x - 3)(x - 4)[/tex]
Step 3: Apply the Zero Product Property.
[tex]x-3=0\implies \boxed{x_1=3}[/tex]
[tex]x-4=0 \implies \boxed{x_2=4}[/tex]
The solutions to this quadratic are: [tex]x_1=3,\ x_2=4[/tex].
.................................................................................................................................................
Learn more about quadratic functions here:
brainly.com/question/27638369