Respuesta :

Answers:

i) [tex]\sf (x + 2)(x+ 3)[/tex]

ii) [tex]\sf \left(3x+1\right)\left(3x+2\right)\left(9x^2+9x-16\right)[/tex]

Factorize expression's:

i.

[tex]\sf (x + 1)^2 + 3(x + 1) + 2[/tex]

apply perfect square and distributive method

[tex]\sf (x^2 + 2(x)(1) + 1^2) + 3x + 3 + 2[/tex]

expand

[tex]\sf x^2 + 2x + 1 + 3x + 3 + 2[/tex]

collect like terms

[tex]\sf x^2 + 2x + 3x + 3 + 2 + 1[/tex]

add/subtract like terms

[tex]\sf x^2 + 5x + 6[/tex]

breakdown

[tex]\sf x^2 + 3x + 2x+ 6[/tex]

factor common term

[tex]\sf x(x + 3) + 2(x+ 3)[/tex]

collect into groups

[tex]\sf (x + 2)(x+ 3)[/tex]

ii.

[tex]\sf (9x^2 + 9x - 4)(9x^2 + 9x - 10) - 72[/tex]

breakdown

[tex]\sf (9x^2 + 12x - 3x - 4)(9x^2 + 15x - 6x - 10) - 72[/tex]

factor common term

[tex]\sf (3x(3x + 4) -1( 3x + 4)) ( (3x(3x + 5)- 2(3x +5) )- 72[/tex]

collect like terms

[tex]\sf (3x -1)( 3x + 4) (3x- 2)(3x +5) - 72[/tex]

expand

[tex]\sf 81x^4+162x^3-45x^2-126x-32[/tex]

factor

[tex]\sf \left(3x+1\right)\left(3x+2\right)\left(9x^2+9x-16\right)[/tex]

Answer:

[tex]\textsf{1.} \quad (x+3)(x+2)[/tex]

[tex]\textsf{2.} \quad (3x+1)(3x+2)(9x^2+9x-16)[/tex]

Step-by-step explanation:

Question 1

[tex]\textsf{Given expression}: \quad(x+1)^2+3(x+1)+2[/tex]

[tex]\textsf{Let }u=(x+1) \implies u^2+3u+2[/tex]

[tex]\textsf{To factor }\:\:u^2+3u+2:[/tex]

Rewrite the middle term as u + 2u:

[tex]\implies u^2+u+2u+2[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies u(u+1)+2(u+1)[/tex]

Factor out the common term (u+1):

[tex]\implies (u+2)(u+1)[/tex]

Replace [tex]u[/tex] with [tex](x+1)[/tex] :

[tex]\implies (x+1+2)(x+1+1)[/tex]

Simplify:

[tex]\implies (x+3)(x+2)[/tex]

Question 2

[tex]\textsf{Given expression}: \quad (9x^2+9x-4)(9x^2+9x-10)-72[/tex]

Expand:

[tex]\implies 9x^2(9x^2+9x-10)+9x(9x^2+9x-10)-4(9x^2+9x-10)-72[/tex]

[tex]\implies 81x^4+81x^3-90x^2+81x^3+81x^2-90x-36x^2-36x+40-72[/tex]

Collect like terms:

[tex]\implies 81x^4+81x^3+81x^3-90x^2+81x^2-36x^2-90x-36x+40-72[/tex]

Combine like terms:

[tex]\implies 81x^4+162x^3-45x^2-126x-32[/tex]

Use the Factor Theorem:

If f(x) is a polynomial, and f(a) = 0, then (x – a)  is a factor of f(x).

[tex]\begin{aligned}\implies f \left(-\dfrac{1}{3}\right) & =81\left(-\dfrac{1}{3}\right)^4+162\left(-\dfrac{1}{3}\right)^3-45\left(-\dfrac{1}{3}\right)^2-126\left(-\dfrac{1}{3}\right)-32\\ & = 1-6-5+42-32\\ & = 0\end{alilgned}[/tex]

Therefore (3x + 1) is a factor.

[tex]\begin{aligned}\implies f \left(-\dfrac{2}{3}\right) & =81\left(-\dfrac{2}{3}\right)^4+162\left(-\dfrac{2}{3}\right)^3-45\left(-\dfrac{2}{3}\right)^2-126\left(-\dfrac{2}{3}\right)-32\\ & = 16-48-20+84-32\\ & = 0\end{alilgned}[/tex]

Therefore (3x + 2) is a factor.

Therefore:

[tex]\implies f(x)=(3x+1)(3x+2)(ax^2+bx+c)[/tex]

Compare the coefficient of x⁴ and the constant to find a and c:

[tex]\implies 3 \cdot 3 \cdot a=81 \implies a=9[/tex]

[tex]\implies 2c=-32 \implies c=-16[/tex]

Therefore:

[tex]\implies f(x)=(3x+1)(3x+2)(9x^2+bx-16)[/tex]

Expand:

[tex]\implies f(x)=81x^4+(81+9b)x^3-(126-9b)x^2-(144-2b)x-32[/tex]

Compare the coefficient of x³ to find b:

[tex]\implies 81+9b=162 \implies b=9[/tex]

Therefore, the fully factorized expression is:

[tex]\implies (3x+1)(3x+2)(9x^2+9x-16)[/tex]

Learn more about factorizing polynomials here:

https://brainly.com/question/27953978

https://brainly.com/question/27948452