I need to see the steps to the problem for me to fully get it

The matrix [tex]\vec C[/tex] resulting from the multiplication between matrices [tex]\vec B[/tex] and [tex]\vec A[/tex] is equal to the matrix [tex]\left[\begin{array}{ccc}37&55&- 20\\23&11&- 20\\25&28&-9\end{array}\right][/tex]. (Correct choice: C)
In this question we must apply the operation of multiplication of two matrices, whose definition is shown below:
[tex]\vec B\, \cdot \, \vec A[/tex], where [tex]\vec B \in \mathbb {R}_{n \times p}[/tex] and [tex]\vec A \in \mathbb{R}_{p \times n}[/tex] (1)
Where each element of the resulting matrix is equal to the following expression:
[tex]c_{(i, j)} = b_{(i, p)} \,\bullet\, a_{(p, j)}[/tex] (2)
Where the operator "[tex]\bullet[/tex]" represents a dot product.
Now we proceed to calculate each element of the matrix:
[tex]c_{(1, 1)} = \left[\begin{array}{ccc}5&7&3\end{array}\right] \,\bullet\,\left[\begin{array}{c}1\\5\\- 1\end{array}\right][/tex]
5 · 1 + 7 · 5 + 3 · (- 1)
37
[tex]c_{(1, 2)} = \left[\begin{array}{ccc}5&7&3\end{array}\right] \,\bullet\,\left[\begin{array}{c}7\\2\\2\end{array}\right][/tex]
5 · 7 + 7 · 2 + 3 · 2
55
[tex]c_{(1, 3)} = \left[\begin{array}{ccc}5&7&3\end{array}\right] \,\bullet\,\left[\begin{array}{c}- 3\\1\\- 4\end{array}\right][/tex]
5 · (- 3) + 7 · 1 + 3 · (- 4)
- 20
[tex]c_{(2, 1)} = \left[\begin{array}{ccc}- 3&7&9\end{array}\right] \,\bullet\,\left[\begin{array}{c}1\\5\\- 1\end{array}\right][/tex]
(- 3) · 1 + 7 · 5 + 9 · (- 1)
23
[tex]c_{(2, 2)} = \left[\begin{array}{ccc}- 3&7&9\end{array}\right] \,\bullet\,\left[\begin{array}{c}7\\2\\2\end{array}\right][/tex]
(- 3) · 7 + 7 · 2 + 9 · 2
11
[tex]c_{(2, 3)} = \left[\begin{array}{ccc}- 3&7&9\end{array}\right] \,\bullet\,\left[\begin{array}{c}- 3\\1\\- 4\end{array}\right][/tex]
(- 3) · (- 3) + 7 · 1 + 9 · (- 4)
- 20
[tex]c_{(3, 1)} = \left[\begin{array}{ccc}2&5&2\end{array}\right] \,\bullet\,\left[\begin{array}{c}1\\5\\- 1\end{array}\right][/tex]
2 · 1 + 5 · 5 + 2 · (- 1)
25
[tex]c_{(3, 2)} = \left[\begin{array}{ccc}2&5&2\end{array}\right] \,\bullet\,\left[\begin{array}{c}7\\2\\2\end{array}\right][/tex]
2 · 7 + 5 · 2 + 2 · 2
28
[tex]c_{(3, 3)} = \left[\begin{array}{ccc}2&5&2\end{array}\right] \,\bullet\,\left[\begin{array}{c}- 3\\1\\- 4\end{array}\right][/tex]
2 · (- 3) + 5 · 1 + 2 · (- 4)
- 9
The matrix [tex]\vec C[/tex] resulting from the multiplication between matrices [tex]\vec B[/tex] and [tex]\vec A[/tex] is equal to the matrix [tex]\left[\begin{array}{ccc}37&55&- 20\\23&11&- 20\\25&28&-9\end{array}\right][/tex]. (Correct choice: C)
To learn more on matrices: https://brainly.com/question/11367104
#SPJ1