Answer:
10
Step-by-step explanation:
[tex]\boxed{\textsf{If }y=x^n,\: \textsf{then }\dfrac{\text{d}y}{\text{d}x}=nx^{n-1}}[/tex]
Given equation:
[tex]2y=x^3+2x^2[/tex]
Isolate y by dividing both sides by 2:
[tex]\implies y=\dfrac{1}{2}x^3+x^2[/tex]
Differentiate with respect to x:
[tex]\implies \dfrac{\text{d}y}{\text{d}x}=3 \cdot \dfrac{1}{2}x^{3-1}+2 \cdot x^{2-1}[/tex]
[tex]\implies \dfrac{\text{d}y}{\text{d}x}=\dfrac{3}{2}x^2+2x[/tex]
Finally, substitute x = 2 into the differentiated equation:
[tex]\begin{aligned} \implies \dfrac{\text{d}y}{\text{d}x} & =\dfrac{3}{2}(2)^2+2(2)\\\\ & = \dfrac{3}{2}(4)+4\\\\ & = \dfrac{12}{2}+4\\\\ & = 6+4\\\\ & = 10\end{aligned}[/tex]
Learn more about differentiation here:
https://brainly.com/question/27958412
https://brainly.com/question/26488862