Respuesta :

Volume of a cylinder: PI x radius^2 x height

= 3.14 x 5^2 x 10 = 785 m^3

Volume of a cone: pi x radius^2 x height/3

= 3.14 x 5^2 x 4/3 = 104.67 m^3

Total volume  = 785 + 104.67 = 889.67 M63

Answer: C. 889.67 M^3

Answer:

[tex]\textsf{C)}\quad \sf 889.67\: m^3[/tex]

Step-by-step explanation:

The given composite solid is made up of a cylinder and a cone.

To find the volume of the composite solid, find the volume of the cylinder and the volume of the cone, then add them together.

Volume of a cylinder:

[tex]\sf V=\pi r^2 h[/tex]

(where r is the radius and h is the height)

Given:

  • r = 5 m
  • h = 10 m

Substitute the given values into the formula and solve for V:

[tex]\begin{aligned}\implies \sf Volume\:of\:the\:cylinder & = \sf \pi (5)^2(10)\\ & = \sf 250 \pi \:\:m^3 \end{aligned}[/tex]

Volume of a cone:

[tex]\sf V=\dfrac{1}{3} \pi r^2 h[/tex]

(where r is the radius and h is the height)

Given:

  • r = 5 m
  • h = 4 m

Substitute the given values into the formula and solve for V:

[tex]\begin{aligned}\implies \sf Volume\:of\:the\:cone & = \sf \dfrac{1}{3} \pi (5)^2(4)\\ & = \sf \dfrac{100}{3}\pi \:\:m^3 \end{aligned}[/tex]

Therefore, the volume of the composite solid is:

[tex]\begin{aligned}\implies \sf Volume\:of\:composite\:solid & = \sf Cylinder\:volume+Cone\:volume\\ & = \sf 250\pi + \dfrac{100}{3}\pi \\ & = \sf \dfrac{850}{3} \pi \\ & = \sf \dfrac{850}{3} \times 3.14 \\ & = \sf 889.67\:m^3\:(2\:d.p.)\end{aligned}[/tex]