The equivalent expression to [tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{17}{13}}[/tex]
Equivalent expressions are similar expressions that may have different forms but when a value is replaced with the variables in the same form provides the same answer.
From the information given, If:
Then the fractional form can be an expression as:
[tex]\mathbf{(\dfrac{r}{s})(x)= \dfrac{3x-1}{2x+1}}[/tex]
where;
[tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{3(6)-1}{2(6)+1}}[/tex]
[tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{18-1}{12+1}}[/tex]
[tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{17}{13}}[/tex]
Learn more about equivalent expressions here:
https://brainly.com/question/24734894
#SPJ1