Respuesta :

The equivalent expression to [tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{17}{13}}[/tex]

What are the equivalent expressions?

Equivalent expressions are similar expressions that may have different forms but when a value is replaced with the variables in the same form provides the same answer.

From the information given, If:

  • r(x) = 3x - 1
  • s(x) = 2x + 1

Then the fractional form can be an expression as:

[tex]\mathbf{(\dfrac{r}{s})(x)= \dfrac{3x-1}{2x+1}}[/tex]

where;

  • x = 6

[tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{3(6)-1}{2(6)+1}}[/tex]

[tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{18-1}{12+1}}[/tex]

[tex]\mathbf{(\dfrac{r}{s})(6)= \dfrac{17}{13}}[/tex]

Learn more about equivalent expressions here:

https://brainly.com/question/24734894

#SPJ1