Respuesta :

Answer:

[tex]\frac{1\cdot \left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}\\[/tex]

[tex]1\cdot \left(4+\sqrt{3}\right)=4+\sqrt{3}[/tex]

[tex]\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right) = 13[/tex]

[tex]= \frac{4+\sqrt{3}}{13}[/tex]

x = 4

y = 3

z = 13

Answer:

x = 4, y = 3, z = 13

Step-by-step explanation:

Multiply the equation by the opposite of the denominator

[tex]\frac{(1)(4 + \sqrt{3}) }{(4-\sqrt{3})(4+\sqrt{3} ) } \\\\\frac{4 + \sqrt{3} }{16 - 4\sqrt{3} +4\sqrt{3} -3} \\\\= \frac{4+\sqrt{3} }{13}[/tex]