Respuesta :

The solution to [tex]\left(2+\sqrt{2}\right)^{\log_2\left(x\right)}+x\left(2+\sqrt{2}\right)^{\log_2\left(x\right)} = 1 + x^2[/tex] is x = 1

How to solve the equation?

The equation is given as:

[tex]\left(2+\sqrt{2}\right)^{\log_2\left(x\right)}+x\left(2+\sqrt{2}\right)^{\log_2\left(x\right)} = 1 + x^2[/tex]

Split the equation as follows:

[tex]y\ =\ \left(2+\sqrt{2}\right)^{\log_2\left(x\right)}+x\left(2+\sqrt{2}\right)^{\log_2\left(x\right)}[/tex]

[tex]y = 1 + x^2[/tex]

Next, we plot the graph of both equations (see attachment)

From the attached graph, the intersection point is (1, 2)

Remove the y value

x = 1

Hence, the solution to [tex]\left(2+\sqrt{2}\right)^{\log_2\left(x\right)}+x\left(2+\sqrt{2}\right)^{\log_2\left(x\right)} = 1 + x^2[/tex] is x = 1

Read more about equations at:

https://brainly.com/question/2972832

#SPJ1

Ver imagen MrRoyal