Respuesta :
The equation of the function that gives a rider's height above the ground in meters as a function of time, in seconds is y(t) = 14sin(πt/8) + 1
The equation of the function that gives the height of the ferris wheel
Since the motion of the ferris wheel is periodic,it follows a sinusoidal function form.
So, the general form of a sine function y(t) is
y(t) = Asin(2πt/T) + K where
- A = amplitude,
- T = period,
- t = time and
- K = vertical shift
Now since radius of 7m, the maximum value from its lowest point is at y = 2r + 1 = 2 × 7 + 1 = 14 + 1 = 15 at sin(2πt/T) = 1 which is the maximum value for sinФ = 1.
Since the bottom of the wheel is 1m above the ground, its minimum value is y = 1 at t = 0.
Also, it rotates once every 16 seconds, so its period T = 16 s.
So, y(t) = Asin(2πt/T) + K
y(t) = Asin(2πt/16) + K
y(t) = Asin(πt/8) + K
At maximum value
15 = Asin(πt/8) + K
15 = A + K (1)
At minimum value
1 = Asin(πt/8) + K
1 = A(0) + K
1 = 0 + K
K = 1
Substituting K into (1), we have
15 = A + 1
15 - 1 = A
14 = A
A = 14
So, y(t) = Asin(πt/8) + K
y(t) = 14sin(πt/8) + 1
So, the equation of the function that gives a rider's height above the ground in meters as a function of time, in seconds, with the rider starting at the bottom of the wheel is y(t) = 14sin(πt/8) + 1
Learn more about sine function here:
https://brainly.com/question/12595712
#SPJ1