Respuesta :

Answer:

y = -6x + 7.5

Explanation:

To find perpendicular bisector equation:

Given points: B(-2, 1), C(4, 2)

First find slope:

[tex]\sf slope: \dfrac{y_2 - y_1}{x_2- x_1} \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]

[tex]\sf slope: \dfrac{2-1}{4-(-2)} } = \dfrac{1}{6}[/tex]

Then the perpendicular slope will be negatively inverse.

[tex]\sf perpendicular \ slope \ (m) : -(\dfrac{1}{6} )^{-1} = -6[/tex]

Then find the mid point coordinates between BC:

[tex](x_m, y_m)= \sf (\dfrac{x_1 + x_2}{2} , \dfrac{y_2 + y_1}{2} )[/tex]

[tex](x_m, y_m) = \sf (\dfrac{-2 + 4}{2} , \dfrac{1 + 2}{2} )[/tex]

[tex](x_m, y_m) = \sf ( 1 , 1.5 )[/tex]

Then find equation:

y - yₘ = m(x - xₘ)

y - 1.5 = -6(x - 1)

y = -6x + 6 + 1.5

y = -6x + 7.5

The answer is y = -6x + 15/2.

First, find the slope of BC.

m = Δy/Δx

m = 2 - 1 / 4 - (-2)

m = 1/6

Hence, the slope of the perpendicular bisector will be the negative reciprocal of the given line.

m' = - (1/ [1/6])

m' = -6

Now, find the midpoint of BC.

M = (-2 + 4 / 2, 2 + 1 / 2)

M = (1, 3/2)

Now, we can find the equation of the perpendicular bisector using the point slope form of equation.

y - y₁ = m (x - x₁)

y - 3/2 = -6 (x - 1)

y - 3/2 = -6x + 6

y = -6x + 15/2