Respuesta :
By De Moivre's formula, we have the following four roots: [tex]z_{1} = 1.565 \cdot \left(\cos \frac{\pi}{6} + i\,\sin \frac{\pi}{6} \right)[/tex], [tex]z_{2} = 1.565\cdot \left(\cos \frac{2\pi}{3} + i\,\sin \frac{2\pi}{3} \right)[/tex], [tex]z_{3} = 1.565\cdot \left(\cos \frac{7\pi}{6}+i\,\sin \frac{7\pi}{6} \right)[/tex] and [tex]z_{4} = 1.565\cdot \left(\cos \frac{5\pi}{3} + i\,\sin \frac{5\pi}{3} \right)[/tex].
How to determine a fourth root of a complex number
According to complex analysis, the fourth roots of a complex number can be found by De Moivre's formula:
[tex]\sqrt[n]{z} = \sqrt[n]{r}\cdot \left[\cos \left(\frac{\theta + 2\pi\cdot i}{n} \right)+ i\,\sin \left(\frac{\theta + 2\pi\cdot i}{n} \right)\right][/tex], for [tex]i = \{0, 1, ..., n - 1\}[/tex] (1)
Where:
- r - Magnitude of the complex number.
- θ - Direction of the complex number, in radians.
First, we find the magnitude and direction of the complex number:
[tex]r = \sqrt{(-3)^{2}+(3\sqrt{3})^{2}}[/tex]
r = 6
[tex]\theta = \tan^{-1} \left(\frac{3\sqrt{3}}{-3} \right)[/tex]
[tex]\theta = \frac{2\pi}{3} \,rad[/tex]
Now we find the four quartic roots of the complex number:
[tex]z_{1} = 1.565 \cdot \left(\cos \frac{\pi}{6} + i\,\sin \frac{\pi}{6} \right)[/tex]
[tex]z_{2} = 1.565\cdot \left(\cos \frac{2\pi}{3} + i\,\sin \frac{2\pi}{3} \right)[/tex]
[tex]z_{3} = 1.565\cdot \left(\cos \frac{7\pi}{6}+i\,\sin \frac{7\pi}{6} \right)[/tex]
[tex]z_{4} = 1.565\cdot \left(\cos \frac{5\pi}{3} + i\,\sin \frac{5\pi}{3} \right)[/tex]
To learn more on complex numbers: https://brainly.com/question/10251853
#SPJ1