Respuesta :

See below for the proof that the areas of the lune and the isosceles triangle are equal

How to prove the areas?

The area of the isosceles triangle is:

[tex]A_1 = \frac 12r^2\sin(\theta)[/tex]

Where r represents the radius.

From the figure, we have:

[tex]\theta = 90[/tex]

So, the equation becomes

[tex]A_1 = \frac 12r^2\sin(90)[/tex]

Evaluate

[tex]A_1 = \frac 12r^2[/tex]

Next, we calculate the length (L) of the chord as follows:

[tex]\sin(45) = \frac{\frac 12L}{r}[/tex]

Multiply both sides by r

[tex]r\sin(45) = \frac 12L[/tex]

Multiply by 2

[tex]L = 2r\sin(45)[/tex]

This gives

[tex]L = 2r\times \frac{\sqrt 2}{2}[/tex]

[tex]L = r\sqrt 2[/tex]

The area of the semicircle is then calculated as:

[tex]A_2 = \frac 12 \pi (\frac{L}{2})^2[/tex]

This gives

[tex]A_2 = \frac 12 \pi (\frac{r\sqrt 2}{2})^2[/tex]

Evaluate the square

[tex]A_2 = \frac 12 \pi (\frac{2r^2}{4})[/tex]

Divide

[tex]A_2 = \frac{\pi r^2}{4}[/tex]

Next, calculate the area of the chord using

[tex]A_3 = \frac 12r^2(\theta - \sin(\theta))[/tex]

Recall that:

[tex]\theta = 90[/tex]

Convert to radians

[tex]\theta = \frac{\pi}{2}[/tex]

So, we have:

[tex]A_3 = \frac 12r^2(\frac{\pi}{2} - \sin(\frac{\pi}{2}))[/tex]

This gives

[tex]A_3 = \frac 12r^2(\frac{\pi}{2} - 1)[/tex]

The area of the lune is then calculated as:

[tex]A = A_2 - A_3[/tex]

This gives

[tex]A = \frac{\pi r^2}{4} - \frac 12r^2(\frac{\pi}{2} - 1)[/tex]

Expand

[tex]A = \frac{\pi r^2}{4} - \frac{\pi r^2}{4} + \frac 12r^2[/tex]

Evaluate the difference

[tex]A = \frac 12r^2[/tex]

Recall that the area of the isosceles triangle is

[tex]A_1 = \frac 12r^2[/tex]

By comparison, we have:

[tex]A = A_1 = \frac 12r^2[/tex]

This means that the areas of the lune and the isosceles triangle are equal

Read more about areas at:

https://brainly.com/question/27683633

#SPJ1