Respuesta :

1a. 10. 24

1b. 125/243

2a. 0. 0048

2b. 32/3125

3a. 0. 64

3b. 0. 0031

4a. 2/5

4b. 48. 735

5a. 2. 36

5b. 1. 39

How to determine the values

1a. Given the values

(2/5)^2/(1/2)^6

Multiply both the numerator and denominator by the powers

⇒ [tex]\frac{\frac{4}{25} }{\frac{1}{64} }[/tex]

To find the common ration, multiply thus;

⇒ [tex]\frac{4}{25}[/tex] × [tex]\frac{64}{1}[/tex]

⇒ [tex]\frac{256}{25}[/tex]

= 10. 24

1b. (5/7)^2 × (5/7)^1

= [tex]\frac{25}{49}[/tex] × [tex]\frac{5}{7}[/tex]

= [tex]\frac{125}{343}[/tex]

= 125/243

2a. 0. 6^1  × 0. 2^3

= 0. 6 × 0. 008

= 0. 0048

2b. (2/5)^3 × (2/5)^2

= [tex]\frac{8}{125}[/tex] × [tex]\frac{4}{25}[/tex]

= [tex]\frac{32}{3125}[/tex]

= 32/ 3125

3a. 1^99 - 0. 6^2

= 1 - 0. 36

= 0. 64

3b. (0. 2 ) ^1 × (1/8)^2

= 0. 2 × 1/64

= 0. 2 × 0. 016

= 0. 0031

4a. (1/2)^2/ (5/8)^1

= [tex]\frac{\frac{1}{4} }{\frac{5}{8} }[/tex]

Take the inverse of the denominator

= [tex]\frac{1}{4}[/tex] × [tex]\frac{8}{5}[/tex]

= 2/5

4b. 7^2 - 0. 5^3

= 49 - 0. 125

= 48. 875

5a. 3^1 - 0. 8 ^2

= 3 - 0. 64

= 2. 36

5b. 0. 7^2 + 0. 9^1

= 0. 49 + 0. 9

= 1. 39

Learn more about index notation here:

https://brainly.com/question/10339517

#SPJ1