Respuesta :

Considering the domain of the function, it is restricted for:

B. [tex]x \neq -3, x \neq -2, x \neq 0[/tex].

What is the domain of a function?

The domain of a function is the set that contains all possible input values for the function.

A fraction cannot have a denominator of zero, hence:

  • [tex]4x^2 - 12x \neq 0[/tex].
  • [tex]-x^2 + 5x - 6 \neq 0[/tex].

We solve these two inequalities to find the restrictions, hence:

[tex]4x^2 - 12x \neq 0[/tex]

[tex]4x(x - 3) \neq 0[/tex]

[tex]4x \neq 0 \rightarrow x \neq 0[/tex]

[tex]x - 3 \neq 0 \rightarrow x \neq 3[/tex].

[tex]-x^2 + 5x - 6 \neq 0[/tex].

[tex]x^2 - 5x + 6 \neq 0[/tex]

[tex](x - 3)(x - 2) \neq 0[/tex]

[tex]x - 2 \neq 0 \rightarrow x \neq 2[/tex].

[tex]x - 3 \neq 0 \rightarrow x \neq 3[/tex].

Hence the correct option is:

B. [tex]x \neq -3, x \neq -2, x \neq 0[/tex].

More can be learned about the domain of a function at https://brainly.com/question/10891721

#SPJ1