Respuesta :
A)f(x)=3/5 and -1.
B)f(x)=(3/5, 0) and (-1, 0).
C)f(x)=(-0.2, -3.2)
D)f(x)= = -0.2.
What is factorization and example?
- Factorization in mathematics is dividing a large number into smaller ones that, when multiplied together, give you the original number. Factorization is the division of a number into its factors or divisors.
- For instance, the factorization of the integer 12 might appear as 3 times 4.
Function: f(x) = 5x² + 2x-3.
a) Completely factor f(x)
f(x) = 5x² + 2x-3.
= 5x² + 5x-3x − 3
= 5x(x+1)-3(x+1)
=(5x-3)(x+1)
f(x)=3/5 and -1.
b)The x-intercepts of the graph of f(x):
f(x) = 5x² + 2x-3.
At f(x) = 0, the x-intercepts are present.
Therefore, x-intercepts are (3/5, 0) and (-1, 0).
c) The end behavior of the graph of f(x):
f(x) = 5x² + 2x-3.
The middle of the zeros is the vertex's x-coordinate.
=-0.2
Find the y-coordinate of the vertex, and substitute the found value of x into the given equation:
f(-0.2)= 5(-0.2)² + 2(-0.2) − 3
=-3.2
d)The steps you would use to graph f(x):
The axis of symmetry is the x value of the vertex.
Therefore, the graph is symmetrical at about x = -0.2.
To learn more about factorization, refer to:
brainly.com/question/20293447
#SPJ9
