Planet-X has a mass of 4.74×1024 kg and a radius of 5870 km.
1. What is the First Cosmic Speed i.e. the speed of a satellite on a low lying circular orbit around this planet? (Planet-X doesn't have any atmosphere.)
2. What is the Second Cosmic Speed i.e. the minimum speed required for a satellite in order to break free permanently from the planet?
3. If the period of rotation of the planet is 16.6 hours, then what is the radius of the synchronous orbit of a satellite?

Respuesta :

(a) The speed of a satellite on a low lying circular orbit around this planet is  7,338.93 m/s.

(b) The minimum speed required for a satellite in order to break free permanently from the planet is 10,378.82 m/s.

(c) The radius of the synchronous orbit of a satellite is 69,801 km .

Speed of the satellite

v = √GM/r

where;

  • M is mass of the planet
  • r is radius of the planet

v = √[(6.67 x 10⁻¹¹ x 4.74 x 10²⁴) / (5870 x 10³)]

v = 7,338.93 m/s

Escape velocity of the satellite

v = √2GM/r

v = √[( 2 x 6.67 x 10⁻¹¹ x 4.74 x 10²⁴) / (5870 x 10³)]

v = 10,378.82 m/s

Speed of the satellite at the given period

v = 2πr/T

r = vT/2π

r = (7,338.93 x 16.6 x 3600 s) / (2π)

r = 69,801 km

Thus, the speed of a satellite on a low lying circular orbit around this planet is  7,338.93 m/s.

The minimum speed required for a satellite in order to break free permanently from the planet is 10,378.82 m/s.

The radius of the synchronous orbit of a satellite is 69,801 km .

Learn more about minimum speed here: https://brainly.com/question/6504879

#SPJ1