Respuesta :

The  solution to the expressions given are;

9 -9t/ 12 - 5t

a. 20/ 169

b. -170/ 169

c.  386/ 169

d.  -10/ 169

How to solve the expressions

Given:

[tex]\frac{9 - 19t}{12 - 5t}[/tex]

We can see that both variables in the numerator and denominator have no common factor, thus cannot be factorized further

a. [tex]\frac{203}{169} - \frac{183}{169}[/tex]

First, let's find the lowest common multiple

LCM = 169

= [tex]\frac{203 - 183}{169}[/tex]

= [tex]\frac{20}{169}[/tex]

= 20/ 169

b. [tex]\frac{13}{119} - \frac{183}{119}[/tex]

The lowest common multiple is 119

= [tex]\frac{13 - 183}{119}[/tex]

substract the numerator

= - 170/ 119

c. [tex]\frac{203}{169} - \frac{183}{169}[/tex]

The lowest common multiple is 169

= [tex]\frac{203 + 183}{169}[/tex]

= 386/ 169

d. [tex]\frac{9}{169}- \frac{19}{169}[/tex]

The lowest common multiple is 169

= [tex]\frac{9 - 19}{169}[/tex]

= - 10/ 169

Thus, we have the solutions to be 9 -9t/ 12 - 5t, 20/ 169, -170/ 169, 386/ 169, -10/ 169 respectively.

Learn more about LCM here:

https://brainly.com/question/12732917

#SPJ1