Respuesta :

Lanuel

By applying Pythagoras theorem, the missing segment lengths of this triangles include:

  • CD = 10√2
  • AC = 10√2
  • BC =  10
  • AB = 10

How to find the missing segment lengths?

Since triangle ACD is a right-angle triangle, we would use Pythagorean theorem to find the missing segment lengths of this triangles as follows:

c² = a² + b² ≡ AD² = CD² + AC²

Next, we would use cos trigonometric ratio to find side CD,

cos45 = adjacent/hypotenuse

cos 45 = CD/20

1/√2 = CD/20

CD = 1/√2 × 20

CD = (20√2)/2

CD = 10√2

For side AC, we have:

AD² = CD² + AC²

AC² = AD² - CD²

AC² = 20² - (10√2)²

AC² = 400 - 100(2)

AC = √200

AC = 10√2

From triangle ABC, we have:

cos45 = BC/10√2

BC = 10√2 × cos45

BC = 10√2 × 1/√2

BC = (10√2)/√2

BC = 10

For side AB, we have:

AB² = (10√2)² - 10²

AB² = 200 - 100

AB² = 100

AB = 10.

Read more on Pythagorean theorem here: https://brainly.com/question/26103766

#SPJ1