The table of values below represent an exponential function. Write an exponential equation that models the data.
x
y
-2
24
-1
16.8
0
11.76
1
8.232
2
5.7624

a.
y = 11.76 (1.3) Superscript x
c.
y = 11.76 (0.7) Superscript x
b.
y = 24 (0.7) Superscript x
d.
y = 16.8 (1.7) Superscript x

Respuesta :

The exponential equation that models the data is [tex]f(x) = 11. 76 ( 0. 7) ^x[/tex]. Option C

How to determine the exponential function

The exponential function would be given by [tex]f(x) = ab^x[/tex]

where

  • a is the y value
  • x=0 and b is the common ratio between y values.

So,

a= 11.76                      [y value where x=0]

Common ratio ⇔[tex](b) = \frac{y2}{y1}[/tex]

⇒ [tex](b) = \frac{16. 8}{24}[/tex]

⇒ b = 0. 7

Substitute into the initial function, [tex]f(x) = ab^x[/tex], we get

[tex]f(x) = 11. 76 ( 0. 7) ^x[/tex]

Thus, the exponential equation that models the data is [tex]f(x) = 11. 76 ( 0. 7) ^x[/tex]. Option C

Learn more about exponential function here:

https://brainly.com/question/11464095

#SPJ1