Respuesta :

The general solution of 2 cos²x-5sinx-4=0​ is x = 7π / 6 or x = 11π / 6 considering [0 < x < 2π]

Given: To find general solution of 2cos²x - 5sinx - 4 = 0​.

Let's solve the given equation.

2cos²x - 5sinx - 4 = 0

We know sin²x + cos²x = 1

cos²x = 1 - sin²x

Replacing cos²x in the equation 2cos²x - 5sinx - 4 = 0, we get:

=> 2(1 - sin²x) - 5sinx - 4 = 0

=> 2 - 2sin²x - 5sinx - 4 = 0

=> - 2sin²x - 5sinx + (2 - 4) = 0

=> - 2sin²x - 5sinx + (-2) = 0

=> - 2sin²x - 5sinx - 2 = 0

=> - (2sin²x + 5sinx + 2) = 0

∴ 2sin²x + 5sinx + 2 = 0

Now factorizing 2sin²x + 5sinx + 2 = 0, we get:

2sin²x + 5sinx + 2 = 0

=> 2sin²x + 4sinx + sinx + 2 = 0

=> 2sinx(sinx + 2) + 1(sinx + 2) = 0

Taking (sinx + 2) common, we get:

=> (sinx + 2)(2sinx + 1) = 0

Now either (sinx + 2) = 0 or (2sinx + 1) = 0

=> sinx = -2 or sinx = -1 / 2

We know that the range of sinx lies between -1 and 1 which is -1 ≤ sinx ≤ 1

or sinx ∈ [-1, 1]            

So, for sinx = -2, -2 does not fall in the range [-1, 1] that is -2 ∉ [-1, 1]

Therefore we will not consider sinx = -2.

Now sinx = -1 / 2, and -1 /2 ∈ [-1, 1], so this equation is considered.

NOTE : As no information is given, we assume that x lies in the interval 0 and 2π, that is x ∈ [0, 2π].

We see that sinx = -1 / 2, that is sinx is negative. Now sinx is negative in the IIIrd and IVth Quadrant.

Also there is a formula for finding the value of x that lies in the given domain [0, 2π].

FORMULA: if sinx = - siny

then, sinx = sin(-y)                         [- sinx = sin(-x) ]

sinx = sin(π + y) or sinx = sin(2π - y) [as x will be in either IIIrd or IVth Quadrant]

So we have: sinx = -1 / 2

=> sinx = -sin(π / 6)                                   [sin (π / 6) = 1 / 2] [0 < x < 2π]

=> sinx = sin(-π / 6)                                   [-sinx = sin(-x)] [0 < x < 2π]

=> sinx = sin(π + π / 6) or sinx = sin(2π - π / 6)   [0 < x < 2π]

=> sinx = sin(7π / 6) or sinx = sin(11π / 6)            [0 < x < 2π]

Therefore x = 7π / 6 or x = 11π / 6                      [0 < x < 2π]

Hence the general solution of 2 cos²x-5sinx-4=0​ is x = 7π / 6 or x = 11π / 6 considering [0 < x < 2π]

Know more about "trigonometric equations" here: https://brainly.com/question/22624805

#SPJ9