Orbital hybridization (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.
The five basic shapes of hybridization are linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral. The geometry of the orbital arrangement: Linear: Two electron groups are involved resulting in sp hybridization, the angle between the orbitals is 180°.
Hybridization occurs when an atom bonds using electrons from both the s and p orbitals, creating an imbalance in the energy levels of the electrons. To equalize these energy levels, the s and p orbitals involved are combined to create hybrid orbitals.
Learn more about hybridization here: