A silver button battery used in a watch contains 0.75 g of zinc and can run until 80% of the zinc is consumed.(a) For how many days can the battery produce a current of 0.85 microamps (10⁻⁶ amps)?

Respuesta :

2.4 × 10⁴ days the battery produce a current of 0.85 microamps.

How to find number of mole ?

To find number of moles use this expression:

Number of moles = [tex]\frac{\text{Given Mass}}{\text{Molar mass}}[/tex]

                             = [tex]\frac{0.75\ g}{65\ \text{g/mol}}[/tex]

                              = 1.15 × 10⁻² moles

It is given that battery run until 80% of the zinc is consumed.

80 % of Zn = 80% × 1.15 × 10⁻² moles

                  = 9.2 × 10⁻³ moles

Oxidation: Zn(s) + 2OH⁻ (aq) → ZnO (s) + H₂O (l) + 2e⁻

Reduction: Ag₂O (s) + H₂O (l) + 2e⁻ → 2Ag (s) + 2OH⁻ (aq)

From  the above equation we can see that there is transfer of 2 electrons

Charge = moles of e⁻ × number of e⁻ transferred × Faraday's constant

             = 9.2 × 10⁻³ moles × 2 × 9.65 × 10⁴

             = 1.8 × 10² C

Now,

Current = [tex]\frac{\text{Charge in C}}{\text{time in sec}}[/tex]

Here,

Current = 0.85 microamperes

             = 0.85 × 10⁻⁶ A

Charge = 1.8 × 10² C

Put the value in above formula we get

Current = [tex]\frac{\text{Charge in C}}{\text{time in sec}}[/tex]

Time taken = [tex]\frac{\text{charge}}{\text{current}}[/tex]

                   = [tex]\frac{1.82 \times 10^2\ C}{0.85 \times 10^{-6}\ A}[/tex]

                   = 2.1 × 10⁸ sec

                   = 2.4 × 10⁴ days

Thus from the above conclusion we can say that 2.4 × 10⁴ days the battery produce a current of 0.85 microamps.

Learn more about the Mole here: https://brainly.com/question/24322641

#SPJ4