Respuesta :
The Bohr radius of an electron in n=3 orbit of H atom is 4.77×[tex]10^{-10} m[/tex].
What does Bohr's radius mean?
The mean radius of an electron's orbit around the nucleus of a hydrogen atom in its ground state is known as the Bohr radius and is denoted by the letter a. (lowest-energy level).
The Bohr radius equation used to find the radius of an electron's orbit is as follows:
[tex]$r_{n}=\frac{n^{2} h^{2} \in_{0}}{\pi m_{e} e^{2}}$[/tex]
Here,
n is the energy level.
h the Plank's constant.
[tex]$\epsilon_{0}$[/tex] is a constant related to the attraction of charges in a vacuum.
[tex]$m_{e}$[/tex] is the mass of an electron.
e is the charge on an electron.
For n=3 orbit of H atom,
[tex]\begin{aligned}&\mathrm{r}_{3}=\frac{3^{2} * h^{2} * \epsilon_{0}}{\pi * m_{e} * e^{2}} \\&\mathrm{~h}=6.626^{*} 10^{-34} \mathrm{Js} \\&\mathrm{m}_{e}=9.109 * 10^{-31} \mathrm{~kg} \\&\mathrm{e}=1.602^{*} 10^{-19} \mathrm{C} \\&\varepsilon_{0}=8.854^{*} 10^{-12} \\&\mathrm{r}_{3}=\frac{9 *\left(6.626 * 10^{-34}\right)^{2} * 8.854 * 10^{-12}}{3.14 * 9.109 * 10^{-31} *\left(1.602 * 10^{-19}\right)^{2}} \\&\mathrm{r}_{3}=4.77^{*} 10^{-10} \mathrm{~m}\end{aligned}[/tex]
The Bohr radius of an electron in n=3 orbit of H atom is 4.77×[tex]10^{-10} m[/tex].
To know more about Bohr radius, visit: https://brainly.com/question/17198417
#SPJ4