Look at this table:
X
-10
-9
-8
-7
-6
y
1,000
810
640
490
360
Write a linear (y = mx + b), quadratic (y = ax²), or exponential (y = a(b)*) function that
models the data.

Respuesta :

A linear (y = mx + b), quadratic (y = ax²), or exponential (y = a(b)*) function that models the data is 1000(810/1000)^x.

The slope-intercept version of the equation for a straight line is written as Y = mx + b.

The parabola-like form of the y=ax^2 graph. The graph would be situated depending on the sign of a.

 x              y

-10          1000

-9             810

-8             640

-7             490

-6             360

Now, y=mx+b

Forming the equation, and subtracting

1000=m(-10)+b   ______(1)

810=m(-9)+b   _______(2)

-___________________

190=-m

m=-190

now, substituting the value of m in equation 1

Thus, b=-900

y=-190x-900

If y=ax^2

at x=-10

y=1000

1000=a(-10)(-10)

1000=100a

10=a

Thus y=10x^2

=>y=ab^x

substituting x=-10, y=1000

1000=ab^(-10)

(1000)b^-10=a

and

810=ab^-9

(810)(b^-9)=a

Thus b = 810/1000 and a=1000

So, y=1000(b)^x=1000(810/1000)^x

To learn more about linear, quadratic and exponential problems from the given link:

https://brainly.com/question/11515427

#SPJ9