Subtract
(a) 8xy from 19xy
(c) (x² - y2)from (2x²-3y2 +7)
Simplify combining like terms:
(a) 3x² - 5x+7; -38x² + 4x-3 and 11x² +7x+8
(b) ²x²y + 2x²y +5 and ²x²y - 3x²y - 11
Find the value of the expression:
25x² +9y² + 30xy when x = -8 and y = -10

Respuesta :

Answer:

Subtract

(a) 19xy - 8xy = 11xy

(b) [tex](2x^2-3y^2+7) - (x^2-y^2)[/tex] = [tex]x^{2}+2y^{2} +7[/tex]

Simplify by combining like terms:

(a) [tex](3x^2-5x+7) + (-38x^2+4x-3)+(11x^2+7x+8)[/tex] = [tex]-26x^2+6x+12[/tex]

(b) [tex](x^2y^2 + 2x^2y+5) + (x^2y^2-3x^2y-11)[/tex] = [tex]2x^2y^2-x^2y-8[/tex]

Find the value of the expression:

[tex]25x^2 + 9y^2+30xy[/tex] when x = -8 and y -10

= [tex]25(-8)^2+9(-10)^2+30*-8*-10[/tex]

= 4900

Answer:

Subtract

(a) 19xy - 8xy = 11xy

(b) (2x^2-3y^2+7) - (x^2-y^2)(2x2−3y2+7)−(x2−y2) = x^{2}+2y^{2} +7x2+2y2+7

Simplify by combining like terms:

(a) (3x^2-5x+7) + (-38x^2+4x-3)+(11x^2+7x+8)(3x2−5x+7)+(−38x2+4x−3)+(11x2+7x+8) = -26x^2+6x+12−26x2+6x+12

(b) (x^2y^2 + 2x^2y+5) + (x^2y^2-3x^2y-11)(x2y2+2x2y+5)+(x2y2−3x2y−11) = 2x^2y^2-x^2y-82x2y2−x2y−8

Find the value of the expression:

25x^2 + 9y^2+30xy25x2+9y2+30xy when x = -8 and y -10

= 25(-8)^2+9(-10)^2+30*-8*-1025(−8)2+9(−10)2+30∗−8∗−10

= 4900