Respuesta :
Answer:
-2, 4, -8, 16, -32, ...
Step-by-step explanation:
To find any term given the nth term, simply substitute the value of n into the given nth term equation.
Given nth term equation:
[tex]\large \boxed{\rm a_n=(-2)^n}[/tex]
Therefore, to find the first 5 terms, substitute the values of n of 1 through 5 into the nth term equation, remembering to apply the following exponent rules:
[tex]\rm (-a)^n=-a^n, \quad \textsf{if }n \textsf{ is odd}[/tex]
[tex]\rm (-a)^n=a^n, \quad \textsf{if }n \textsf{ is even}[/tex]
First 5 terms
[tex]\rm a_1=(-2)^1=-2[/tex]
[tex]\rm a_2=(-2)^2=4[/tex]
[tex]\rm a_3=(-2)^3=-8[/tex]
[tex]\rm a_4=(-2)^4=16[/tex]
[tex]\rm a_5=(-2)^5=-32[/tex]
Answer:
- -2,4,-8,16,-32
Step-by-step explanation:
let's understanding the question situation,
we have to find the first 5 terms given the nth term.
According to the question,
The given term is
[tex] \\ \qquad \qquad \large \boxed{ \sf{ \: \: a_n = (- 2)^n \: \: }}[/tex]
Solution:-
- [tex] { \sf{ \: \: a_{1} = (- 2)^{1}=\bold{-2} \: \: }}[/tex]
- [tex] { \sf{ \: \: a_{2} = (- 2)^{2}=\bold{4} \: \: }}[/tex]
- [tex] { \sf{ \: \: a_{3} = (- 2)^{3}=\bold{-8} \: \: }}[/tex]
- [tex] { \sf{ \: \: a_{4} = (- 2)^{4}=\bold{16} \: \: }}[/tex]
- [tex] { \sf{ \: \: a_{5} = (- 2)^{5}=\bold{-32} \: \: }}[/tex]
Final answer:-
.°. The First 5term is -2,4,-8,16,-32.