Find the first 5 terms given the nth term.

[tex] \\ \qquad \qquad \large \boxed{ \bf{ \: \: a_n = (- 2)^n \: \: }}[/tex]
[tex] \\ [/tex]
[tex] \qquad \sf \red{Need \: the \: exact \: and \: correct} \: \\ \sf \qquad \red{ answer \: and \: solution}.[/tex]

Respuesta :

Answer:

-2, 4, -8, 16, -32, ...

Step-by-step explanation:

To find any term given the nth term, simply substitute the value of n into the given nth term equation.

Given nth term equation:

[tex]\large \boxed{\rm a_n=(-2)^n}[/tex]

Therefore, to find the first 5 terms, substitute the values of n of 1 through 5 into the nth term equation, remembering to apply the following exponent rules:

  [tex]\rm (-a)^n=-a^n, \quad \textsf{if }n \textsf{ is odd}[/tex]

  [tex]\rm (-a)^n=a^n, \quad \textsf{if }n \textsf{ is even}[/tex]

First 5 terms

[tex]\rm a_1=(-2)^1=-2[/tex]

[tex]\rm a_2=(-2)^2=4[/tex]

[tex]\rm a_3=(-2)^3=-8[/tex]

[tex]\rm a_4=(-2)^4=16[/tex]

[tex]\rm a_5=(-2)^5=-32[/tex]

Answer:

  • -2,4,-8,16,-32

Step-by-step explanation:

let's understanding the question situation,

we have to find the first 5 terms given the nth term.

According to the question,

The given term is

[tex] \\ \qquad \qquad \large \boxed{ \sf{ \: \: a_n = (- 2)^n \: \: }}[/tex]

Solution:-

  • [tex] { \sf{ \: \: a_{1} = (- 2)^{1}=\bold{-2} \: \: }}[/tex]

  • [tex] { \sf{ \: \: a_{2} = (- 2)^{2}=\bold{4} \: \: }}[/tex]

  • [tex] { \sf{ \: \: a_{3} = (- 2)^{3}=\bold{-8} \: \: }}[/tex]

  • [tex] { \sf{ \: \: a_{4} = (- 2)^{4}=\bold{16} \: \: }}[/tex]

  • [tex] { \sf{ \: \: a_{5} = (- 2)^{5}=\bold{-32} \: \: }}[/tex]

Final answer:-

.°. The First 5term is -2,4,-8,16,-32.