Respuesta :

The volume of the region described above (which lies in between the paraboloid) in the full question is given by Option C and Option A. because both.

What is the explanation for the above answer?

We are given a region that lies between the paraboloid as:

z= 24 - x² - y; and

z = 2√(x² + y²)

Using cylindrical coordinates:

x = xcosθ, y = x sinθ, z  = 2

dv = x dx dθ dx

z = 24 - t² ; and

z = 2e

⇒ 24 - t² = 2∈

∈²  + 2t - 24 = 0

(∈ + 6) (∈-4) = 0

∈ = -6/ ∈ = 4

∈ ≠ -6

⇒ ∈ = 4

∈: 0 → 4, θ: 0 → 2π

⇒ Volume  = [tex]\int_{0}^{2\pi}[/tex][tex]\int_{0}^{4}[/tex][tex]\int_{2t}^{24-E^2}[/tex]∈ dz dt dθ

= [tex]\int_{0}^{2\pi}[/tex]dθ [tex]\int_{0}^{4}[/tex] [tex][\mathrm{Z}]_{2E}^{24-E^2}[/tex]

= [tex][\mathrm{\theta}]_{\pi}^{2\pi}[/tex][tex]\int_{0}^{4}[/tex] ∈ - ∈³ - 2∈² dt

= 2π [tex]\int_{0}^{4}[/tex] 24∈ - ∈³ -2∈² dt

= 2π [192 - 64 - (128)/3]

= 2π [85.33]

= 536.16514

Learn more about paraboloid:
https://brainly.com/question/19090669
#SPJ4

Full Question:

Find the volume of the region E that lies between the paraboloid z= 24 - x² - y and the cone z = 2√(x² + y²)

A) 536.16514

B) 5361.651464

C) 536.16514

D) None of the above.